Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A Custom‐Built Insulin Resistance Gene Chip

Identifieur interne : 00B448 ( Main/Exploration ); précédent : 00B447; suivant : 00B449

A Custom‐Built Insulin Resistance Gene Chip

Auteurs : Ken Walder [Australie] ; David Segal [Australie] ; Sam Chehab [Australie] ; Guy Augert [Australie, France] ; David Cameron-Smith [Australie] ; Mark Hargreaves [Australie] ; Greg R. Collier [Australie]

Source :

RBID : ISTEX:2F6E9EEEBC228A378DC3FFE538D6DBE56B0E671A

English descriptors

Abstract

Abstract: Objectives/Aim—Microarray (gene chip) technology offers a powerful new tool for analyzing the expression of large numbers of genes in many experimental samples. The aim of this study was to design, construct, and use a gene chip to measure the expression levels of key genes in metabolic pathways related to insulin resistance. Methods—We selected genes that were implicated in the development of insulin resistance, including genes involved in insulin signaling; glucose uptake, oxidation, and storage; fat uptake, oxidation, and storage; cytoskeletal components; and transcription factors. The key regulatory genes in the pathways were identified, along with other recently identified candidate genes such as calpain‐10. A total of 242 selected genes (including 32 internal control elements) were sequence‐verified, purified, and arrayed on aldehyde‐coated slides. Results—Where more than 1 clone containing the gene of interest was available, we chose those containing the genes in the 5′ orientation and an insert size of around 1.5 kb. Of the 262 clones purchased, 56 (21%) were found to contain sequences other than those expected. In addition, 2 (1%) did not grow under standard conditions and were assumed to be nonviable. In these cases, alternate clones containing the gene of interest were chosen as described above. The current version of the Insulin Resistance Gene Chip contains 210 genes of interest, plus 48 control elements. A full list of the genes is available at http://www.hbs.deakin.edu.au/mru/research/gene_chip_tech/genechip_three.htm/. Conclusions—The human Insulin Resistance Gene Chip that we have constructed will be a very useful tool for investigating variation in the expression of genes relevant to insulin resistance under various experimental conditions. Initially, the gene chip will be used in studies such as exercise interventions, fasting, euglycemic‐hyperinsulinemic clamps, and administration of antidiabetic agents.

Url:
DOI: 10.1111/j.1749-6632.2002.tb04283.x


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A Custom‐Built Insulin Resistance Gene Chip</title>
<author>
<name sortKey="Walder, Ken" sort="Walder, Ken" uniqKey="Walder K" first="Ken" last="Walder">Ken Walder</name>
</author>
<author>
<name sortKey="Segal, David" sort="Segal, David" uniqKey="Segal D" first="David" last="Segal">David Segal</name>
</author>
<author>
<name sortKey="Chehab, Sam" sort="Chehab, Sam" uniqKey="Chehab S" first="Sam" last="Chehab">Sam Chehab</name>
</author>
<author>
<name sortKey="Augert, Guy" sort="Augert, Guy" uniqKey="Augert G" first="Guy" last="Augert">Guy Augert</name>
</author>
<author>
<name sortKey="Cameron Mith, David" sort="Cameron Mith, David" uniqKey="Cameron Mith D" first="David" last="Cameron-Smith">David Cameron-Smith</name>
</author>
<author>
<name sortKey="Hargreaves, Mark" sort="Hargreaves, Mark" uniqKey="Hargreaves M" first="Mark" last="Hargreaves">Mark Hargreaves</name>
</author>
<author>
<name sortKey="Collier, Greg R" sort="Collier, Greg R" uniqKey="Collier G" first="Greg R." last="Collier">Greg R. Collier</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:2F6E9EEEBC228A378DC3FFE538D6DBE56B0E671A</idno>
<date when="2002" year="2002">2002</date>
<idno type="doi">10.1111/j.1749-6632.2002.tb04283.x</idno>
<idno type="url">https://api.istex.fr/document/2F6E9EEEBC228A378DC3FFE538D6DBE56B0E671A/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000915</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000915</idno>
<idno type="wicri:Area/Istex/Curation">000915</idno>
<idno type="wicri:Area/Istex/Checkpoint">001C78</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001C78</idno>
<idno type="wicri:doubleKey">0077-8923:2002:Walder K:a:custom:built</idno>
<idno type="wicri:Area/Main/Merge">00C239</idno>
<idno type="wicri:Area/Main/Curation">00B448</idno>
<idno type="wicri:Area/Main/Exploration">00B448</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">A Custom‐Built Insulin Resistance Gene Chip</title>
<author>
<name sortKey="Walder, Ken" sort="Walder, Ken" uniqKey="Walder K" first="Ken" last="Walder">Ken Walder</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Metabolic Research Unit, Deakin University, Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Segal, David" sort="Segal, David" uniqKey="Segal D" first="David" last="Segal">David Segal</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Metabolic Research Unit, Deakin University, Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chehab, Sam" sort="Chehab, Sam" uniqKey="Chehab S" first="Sam" last="Chehab">Sam Chehab</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Metabolic Research Unit, Deakin University, Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Augert, Guy" sort="Augert, Guy" uniqKey="Augert G" first="Guy" last="Augert">Guy Augert</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Metabolic Research Unit, Deakin University, Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Merck‐Lipha SA, Lyon</wicri:regionArea>
<placeName>
<region type="region">Auvergne-Rhône-Alpes</region>
<region type="old region">Rhône-Alpes</region>
<settlement type="city">Lyon</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cameron Mith, David" sort="Cameron Mith, David" uniqKey="Cameron Mith D" first="David" last="Cameron-Smith">David Cameron-Smith</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Deakin University, Burwood, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hargreaves, Mark" sort="Hargreaves, Mark" uniqKey="Hargreaves M" first="Mark" last="Hargreaves">Mark Hargreaves</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Deakin University, Burwood, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Collier, Greg R" sort="Collier, Greg R" uniqKey="Collier G" first="Greg R." last="Collier">Greg R. Collier</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Metabolic Research Unit, Deakin University, Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Autogen Limited, South Melbourne, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Annals of the New York Academy of Sciences</title>
<title level="j" type="alt">ANNALS OF NEW YORK ACADEMY SCIENCES</title>
<idno type="ISSN">0077-8923</idno>
<idno type="eISSN">1749-6632</idno>
<imprint>
<biblScope unit="vol">967</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="274">274</biblScope>
<biblScope unit="page" to="282">282</biblScope>
<biblScope unit="page-count">9</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2002-06">2002-06</date>
</imprint>
<idno type="ISSN">0077-8923</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0077-8923</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Candidate genes</term>
<term>Cdna</term>
<term>Clone</term>
<term>Deakin university</term>
<term>Differential expression</term>
<term>Exercise interventions</term>
<term>Experimental sample</term>
<term>Experimental samples</term>
<term>Gene</term>
<term>Gene chip</term>
<term>Gene chips</term>
<term>Gene expression</term>
<term>Glucose uptake</term>
<term>Hepg2</term>
<term>Hepg2 cells</term>
<term>High degree</term>
<term>Hybridization</term>
<term>Hybridization intensities</term>
<term>Individual genes</term>
<term>Insulin</term>
<term>Insulin resistance</term>
<term>Insulin resistance candidate genes</term>
<term>Insulin resistance gene chip</term>
<term>Insulin treatment</term>
<term>Internal control elements</term>
<term>Large numbers</term>
<term>Life technologies</term>
<term>Metabolic pathways</term>
<term>Metabolic processes</term>
<term>Reference samples</term>
<term>Representative agarose</term>
<term>Sciences figure</term>
<term>Signal transduction</term>
<term>Therapeutic targets</term>
<term>Transcription factors</term>
<term>Useful tool</term>
<term>York academy</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Candidate genes</term>
<term>Cdna</term>
<term>Clone</term>
<term>Deakin university</term>
<term>Differential expression</term>
<term>Exercise interventions</term>
<term>Experimental sample</term>
<term>Experimental samples</term>
<term>Gene</term>
<term>Gene chip</term>
<term>Gene chips</term>
<term>Gene expression</term>
<term>Glucose uptake</term>
<term>Hepg2</term>
<term>Hepg2 cells</term>
<term>High degree</term>
<term>Hybridization</term>
<term>Hybridization intensities</term>
<term>Individual genes</term>
<term>Insulin</term>
<term>Insulin resistance</term>
<term>Insulin resistance candidate genes</term>
<term>Insulin resistance gene chip</term>
<term>Insulin treatment</term>
<term>Internal control elements</term>
<term>Large numbers</term>
<term>Life technologies</term>
<term>Metabolic pathways</term>
<term>Metabolic processes</term>
<term>Reference samples</term>
<term>Representative agarose</term>
<term>Sciences figure</term>
<term>Signal transduction</term>
<term>Therapeutic targets</term>
<term>Transcription factors</term>
<term>Useful tool</term>
<term>York academy</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Abstract: Objectives/Aim—Microarray (gene chip) technology offers a powerful new tool for analyzing the expression of large numbers of genes in many experimental samples. The aim of this study was to design, construct, and use a gene chip to measure the expression levels of key genes in metabolic pathways related to insulin resistance. Methods—We selected genes that were implicated in the development of insulin resistance, including genes involved in insulin signaling; glucose uptake, oxidation, and storage; fat uptake, oxidation, and storage; cytoskeletal components; and transcription factors. The key regulatory genes in the pathways were identified, along with other recently identified candidate genes such as calpain‐10. A total of 242 selected genes (including 32 internal control elements) were sequence‐verified, purified, and arrayed on aldehyde‐coated slides. Results—Where more than 1 clone containing the gene of interest was available, we chose those containing the genes in the 5′ orientation and an insert size of around 1.5 kb. Of the 262 clones purchased, 56 (21%) were found to contain sequences other than those expected. In addition, 2 (1%) did not grow under standard conditions and were assumed to be nonviable. In these cases, alternate clones containing the gene of interest were chosen as described above. The current version of the Insulin Resistance Gene Chip contains 210 genes of interest, plus 48 control elements. A full list of the genes is available at http://www.hbs.deakin.edu.au/mru/research/gene_chip_tech/genechip_three.htm/. Conclusions—The human Insulin Resistance Gene Chip that we have constructed will be a very useful tool for investigating variation in the expression of genes relevant to insulin resistance under various experimental conditions. Initially, the gene chip will be used in studies such as exercise interventions, fasting, euglycemic‐hyperinsulinemic clamps, and administration of antidiabetic agents.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
</country>
<region>
<li>Auvergne-Rhône-Alpes</li>
<li>Rhône-Alpes</li>
</region>
<settlement>
<li>Lyon</li>
</settlement>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Walder, Ken" sort="Walder, Ken" uniqKey="Walder K" first="Ken" last="Walder">Ken Walder</name>
</noRegion>
<name sortKey="Augert, Guy" sort="Augert, Guy" uniqKey="Augert G" first="Guy" last="Augert">Guy Augert</name>
<name sortKey="Cameron Mith, David" sort="Cameron Mith, David" uniqKey="Cameron Mith D" first="David" last="Cameron-Smith">David Cameron-Smith</name>
<name sortKey="Chehab, Sam" sort="Chehab, Sam" uniqKey="Chehab S" first="Sam" last="Chehab">Sam Chehab</name>
<name sortKey="Collier, Greg R" sort="Collier, Greg R" uniqKey="Collier G" first="Greg R." last="Collier">Greg R. Collier</name>
<name sortKey="Collier, Greg R" sort="Collier, Greg R" uniqKey="Collier G" first="Greg R." last="Collier">Greg R. Collier</name>
<name sortKey="Hargreaves, Mark" sort="Hargreaves, Mark" uniqKey="Hargreaves M" first="Mark" last="Hargreaves">Mark Hargreaves</name>
<name sortKey="Segal, David" sort="Segal, David" uniqKey="Segal D" first="David" last="Segal">David Segal</name>
<name sortKey="Walder, Ken" sort="Walder, Ken" uniqKey="Walder K" first="Ken" last="Walder">Ken Walder</name>
</country>
<country name="France">
<region name="Auvergne-Rhône-Alpes">
<name sortKey="Augert, Guy" sort="Augert, Guy" uniqKey="Augert G" first="Guy" last="Augert">Guy Augert</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00B448 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 00B448 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:2F6E9EEEBC228A378DC3FFE538D6DBE56B0E671A
   |texte=   A Custom‐Built Insulin Resistance Gene Chip
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024